US009381423B2

a2z United States Patent (10) Patent No.: US 9,381,423 B2
McCord (45) Date of Patent: Jul. 5, 2016
(54) METHOD AND APPARATUS FOR GAME 2012/0289324 Al* 11/2012 Banceletal. 463/26
PLAY INVOLVING PUZZLES WITH 2013/0079077 Al* 3/2013 Stegall 463/9
2013/0079082 Al* 3/2013 Banceletal. 463/9
AUTOCORRECT-RELATED OBFUSCATION 2013/0260849 Al* 10/2013 Cahill etal.ccceoeeeee. 463/9
(71) Applicant: ME MecCord, LL.C, Ballwin, MO (US)
OTHER PUBLICATIONS
(72) Inventor: - Mary Eunice McCord, Ballwin, MO WordsWithFriends wiki NPL release date Jul. 2009.*
(US)
“Damn You Auto Correct Board Game”, http://www.calendars.com/
; . : Go!-Games/Damn-You-Auto-Corrrect-Board-Game/prod2013000,
(73) Assignee: ME McCord, LL.C, Ballwin, MO (US)
’ ’ downloaded on Jan. 7, 2013, 2 pages.
(*) Notice: Subject to any disclaimer, the term of this “Looking for the Perfect Gift? C?ro! Cal.endars, Games & Toys and
patent is extended or adjusted under 35 Calendars.com Recommends Unique Gifts for the Hard-to-Buy-For
U.S.C. 154(b) by 179 days Person”, http://www.cnbc.com/id/100297582/Looking_ for_the
T ’ Perfect_ Gift Go_ Calenders_ Games, Austin, Texas, Dec. 10,
. 2012, downloaded on Jan. 7, 2013, 3 pages.
(21) Appl. No.: 13/795,795 pag
Trademark Electronic Search System (TESS), “Damn You Autocor-
(22) Filed: Mar. 12, 2013 rect”, http://tess2.uspto.gov/bin/showfield?f=doc
&state=4008:4vnn7r2.1, downloaded on Jan. 7, 2013, 2 pages.
(65) Prior Publication Data . .
* cited by examiner
US 2014/0221066 Al Aug. 7, 2014
Related U.S. Application Data Primary Examiner — Masud Ahmed
(60) Provisional application No. 61/762,111, filed on Feb. (74) Attorney, Agent, or Firm — Thompson Coburn LLP
7,2013.
(51) Int.Cl (57 ABSTRACT
ﬁg;ﬁ zgz 888288 New and unusual games are described herein that are engag-
(52) US.Cl ’ ing and fun and can leverage well-known text autocorrection
L concepts to present puzzles for solution to users that effec-
C.PC e AG63F 9/183 (2013.01) tively employ autocorrection in reverse. Such a puzzle can
(58) Field of Classification Search comprise a puzzle character string, the puzzle character string
USPC s 463/9, 16.725, 30-42 comprising one or more obfuscated words, wherein the one or
See application file for complete search history. more obfuscated words are configured to be de-obfuscated by
(56) References Cited an autocorrection algorithm. The de-obfuscated form of the

2011/0230246 Al*

U.S. PATENT DOCUMENTS

6,340,159 B1* 1/2002 Giangrante

9/2011 Brook et al.

................... 273/272
...................... 463/9

puzzle is its solution. Any of a number of games can then be
played where one or more users attempt to solve such puzzles.

19 Claims, 12 Drawing Sheets

—

300: Select obfuscated puzzie

Gameshow Context }
302: Defiver obiuscated puzzle to players
e 320: henily earlicss of the
Player 1 Rirwirien '
With device to input — w\ 304: Receive proposed solations from players
text & autocorrect. 8 322 Check for correctness
Host l
Administer & ru!y’ ‘ 306 Progess the proposed solutions Correct Incorrect
who wins
Player 2 // . 324: Go to next
Go'o siep 308 carliest of the
Also with device ‘ 308: (dentify winner ’E”‘;:’ul;;‘n’il“““"

-

310: Keep playing?

lNo

Stop

U.S. Patent Jul. 5, 2016 Sheet 1 of 12 US 9,381,423 B2

Obfuscated Puzzie
Player 1 (

)

Yp nr pt borri br

. s The obfuscated puzzle contains
one or more obfuscated words
that can be de-obfuscated via

Player N auto-correct software

_—/ e First player to solve the puzzie

wins

Figure 1(a)

Player 1
r\ Obfuscated Puzzle

Yp nr pt bor ri br

“To be or not to be”

i)

WINNER

\‘/ Player 2

Figure 1(b)

U.S. Patent Jul. 5, 2016 Sheet 2 of 12 US 9,381,423 B2

App Context

Server
Test
Answers

Phone

Auto Keep
Correct Time
Keep

Software

Scores

Website Context

Server
Run ACS
Text C Network Test
omputer . A
Strings” P Tekt Strings o e
Keep
Angwers ! Scores

V4

Gameshow Context

e N
Player 1 Obfuscated
— Puzzle
With device to input \
q text & autocorrect.)
Host
4 N Administer & rule
Player 2 who wins
Also with device

N /

Figure 1(c)

U.S. Patent Jul. 5, 2016 Sheet 3 of 12 US 9,381,423 B2

200 TN

User
Computing
Device . PNELW
{206) ' '

User
Computing
Device
(206)

Server
{202)

User
Computing /—;7—\
Device ~

(206)

System
Database
(204)

N
Figure 2

US 9,381,423 B2

Sheet 4 of 12

Jul. §5,2016

U.S. Patent

SUOHN|OS ~
pasodosd psaieosi
8y} JO 1sa14ed
Xeu 0} 09 e

80¢ de1s 01 09

“om.too:_-/ 18107

- SSOUIDRLI00 10} YoaYD Z2¢
A

suonnos pasodold paaeosl
8y} jo Jseijies Ajyuep] 10ze

¢ a4nbi4

doig

o]

sBukeid desy p1e

A

JBuUMm AJuspt 180¢

A

suonnios pescdoid ey} ssedold :90¢

A

ssaheid wolyy suonnios pasodolid aalBosy Y0

A

siefeid 0} sjzznd psieosSnyqo JBAleqg Z0S

A

apzznd pe)eosSnNgo 19818 (00E

SOA

A

U.S. Patent Jul. 5, 2016 Sheet 5 of 12 US 9,381,423 B2

206 —‘—\

10 '« p| Wireless /O
Device <4—»1| processor | | (408)
(404) ! (400) i
: 7y i .
] «—p| Microphone
I t : v : (410)
utocorrect |] Memory '
Program ! (402) i
(4086) : l—p Speaker
e - (412)
Figure 4(a)
Mobile Application (450)
GUI Screens
/O Programs (456) (452)
GU! Data Out Interface
(458)
«— |

GUI Data In Interface |
(460) |

Wireless Data Out
Interface (462)

Control Program (454)

A
\ 4

Wireless Data In
Interface (464)

Figure 4(b)

U.S. Patent Jul. 5, 2016 Sheet 6 of 12 US 9,381,423 B2

206

-

500
502 —)
Your Puzzle is:
Yp nr pt borri br —
504 508
\ Please enter your solution:
, X |
— I M
510
Submit
(508)

Display the keyboard here
(508)
Start One- Start Multi- Join Multi-
Player Player Player Settings
Game Game Game (520)
(514) (516) (518)

O

Figure 5(a)

U.S. Patent Jul. 5, 2016 Sheet 7 of 12 US 9,381,423 B2

206

ﬁ /f\ 550

552

Enable Autocorrect?

o
Show timer?

O

Figure 5(b)

U.S. Patent

Jul. §5,2016

Sheet 8 of 12

600: Display obfuscated puzzie

A

602: Receive user input for proposed solution to

the displayed obfuscated puzzle

A

No

604: s autocorrect enabled?

Yes

606: Execute autocorrect program and suggest

correctio

n (if any)

h 4

608: Receive user selection of “submit” button?

US 9,381,423 B2

A

No

Yes

610: Submit received user input as a proposed
solution

Figure 6

F 700

Puzzle (702)

Solution (704)

Category (706)

Difficulty (708)

OP;4

Solution for OP4

Phrase

Hard

OP,

Solution for OP»

Thing

Easy

OP3

Solution for OP3

Phrase

Medium

Figure 7

U.S. Patent Jul. 5, 2016 Sheet 9 of 12 US 9,381,423 B2
800 ,\ 800 ,_\
Word (802) | Obfuscated Word (804) Word (802) | Obfuscated Word (804)
to Yp or pr
tp oe
ri pt
800 _\ : 800 — :
Word (802) | Obfuscated Word (804) Word (802) | Obfuscated Word (804)
be br not bot
bw npy
nr npt
bor
Figure 8

900: Receive solution

A 4

902: Parse solution into component word(s)

A

904: Select obfuscated word for each component
word

h 4

906: Assemble and store obfuscated puzzle in
association with the solution

Figure 9

U.S. Patent Jul. 5, 2016 Sheet 10 of 12 US 9,381,423 B2

1002
App Store \J
1004
.
Select Game

Update Accountin
“Pay for it”

Load Program &
Workl Space

1006
_J
1008
)
v 1010
1012
J

Load Data Base

. Randomly Sort
Data Base Data Base Puzzle Example
- 1014 Obfuscated Word Correct Word
\ Read Data Base —_ COKXSMO TAKEN
+ 1016 REISRER LASSIE
/ RSKEM VOLCANO
Set Timers LSAAOE TWISTER
1018
i \-/ Match obfuscated word with correct word.
Display Puzzle
b 3 1020
Engage AutoCorrect “J
* 1022
‘ Y —_—/
Accept Input
A 1024
NO
Complete?

NO . Figure 10(a)
ead

U.S. Patent Jul. 5, 2016 Sheet 11 of 12 US 9,381,423 B2

ﬁ //\1050

Puzzle Match: Slide the words below to pair the 1052
puzzles with their solutions
Puzzle Words Solutions
[e
COKXSMO TAKEN
REISRER LASSIE
RSKEM VOLCANO
LSAAQOE TWISTER
Submit
1056 (1054) 1060
Enter Text Here: 7 Corrected Version:
! X /
<_
Display the keyboard here
(1058)

O

Figure 10(b)

U.S. Patent Jul. 5,2016 Sheet 12 of 12 US 9,381,423 B2
1100: Player generates an obfuscated puzzle
v
1102: Player shares the generated obfuscated
puzzie with another player
A
1104: The another player receives the shared
obfuscated puzzle and attempts to solve it.
Figure 11
206 \\ /-\1200
Quiz a Friend:
1216
. 1202
Please enter your solution:
y / X _,,__,—)
Tobeornottobe S —
— M
Your obfuscated puzzie is: 12047 1218
Yp nr pt bor ri br
Generate Generate Share with
Puzzie New Puzzle Start Over Friend
(1206) for Same (1210) (1212)
Solution
(1208)
Display the keyboard here
(1214)

Figure 12

US 9,381,423 B2

1
METHOD AND APPARATUS FOR GAME
PLAY INVOLVING PUZZLES WITH
AUTOCORRECT-RELATED OBFUSCATION

CROSS-REFERENCE AND PRIORITY CLAIM
TO RELATED PATENT APPLICATION

This patent application claims priority to U.S. provisional
patent application Ser. No. 61/762,111, filed Feb. 7, 2013, and
entitled “Method and Apparatus for Game Play Involving
Puzzles with Autocorrect-Related Obfuscation”, the entire
disclosure of which is incorporated herein by reference.

INTRODUCTION

Many puzzle games are known where users attempt to
solve a coded word or phrase. Typically, such puzzles use a
simple letter substitution encryption where each letter of a
word or phrase is substituted with a replacement letter such
that there is a one-to-one correspondence in the mapping
between letters and replacement letters (e.g., the letter “r” is
used in place of all instances of the letter “a” in the word/
phrase, the letter, the letter “d” is used in place of all instances
of the letter “b” in the word/phrase, and so on, where each
replacement letter will map to only one solution letter). The
inventor believes that greater and more interesting opportu-
nities exist for puzzle solving game play that leverage the
widespread availability of and knowledge regarding autocor-
rect software.

Autocorrect software is a well-known tool for text replace-
ment and spelling correction that employs an autocorrection
algorithm to process an input string of characters. Autocorrect
software is widely deployed in programs such as word pro-
cessing applications and other data processing applications
which involve text input by a user (such as text messaging
found on many smart phones, email applications, etc.). In
simplistic terms, the software determines whether the input
string matches a known word, and if the input string does not
match a known word, the software generates a replacement
word for the input string. As used herein, the term “autocor-
rection algorithm™ refers to a technique that processes an
input string of characters to determine whether a correction to
the input string should be generated and presented to a user.

Autocorrect software exists in many forms. For example,
some autocorrection algorithms employ an auto-completion
feature, whereby the algorithm attempts to predict the word
being entered by the user as the user enters characters for the
word. Thus, an autocorrection algorithm with an auto-
completion feature may automatically present the word
“character” to the user after the user has entered the character
string “charac”. Furthermore, some autocorrection algo-
rithms can automatically replace input strings with replace-
ment strings when deemed appropriate, while other autocor-
rection algorithms can automatically suggest such
replacement strings (with the user thus having the option to
accept the suggested replacement). Still other autocorrection
algorithms can switch between auto-replace and auto-suggest
based on user-selectable configuration settings. Also, some
autocorrection algorithms employ a static mapping of input
character strings to corrected character strings, while other
autocorrection algorithms employ a dynamic adaptive map-
ping. Such adaptive mappings can be configured to “learn”
common misspellings of a user so that they can later be
detected and auto-corrected in the future. Further still, it
should be understood that an autocorrection algorithm need
not maintain a one-to-one correspondence between the num-
ber of characters in an input string and a corrected string. For

10

15

20

25

30

35

40

45

50

55

60

65

2

example, with some autocorrection algorithms, it is expected
that the input string “reisrer” (7 characters) will map to the
corrected string “register” (8 characters). Further still, it
should be understood that an autocorrection algorithm can
employ multi-word contextual analysis when generating a
corrected string. For example, an autocorrection algorithm
may be configured to map the input string “reisrer” to either
“register” or “twister” depending on context. That is, the
corrected string generated by the algorithm for a given input
string can vary as a function of other words near the input
string under consideration.

The inventor believes that new and unusual games that are
engaging and fun can leverage these autocorrection concepts
by presenting puzzles for solution to users that effectively
employ autocorrection in reverse. In accordance with the
invention, a puzzle can comprise a puzzle character string, the
puzzle character string comprising one or more obfuscated
words, wherein the one or more obfuscated words are con-
figured to be de-obfuscated by an autocorrection algorithm.
Such a puzzle is referred to herein as an “obfuscated puzzle”.
The de-obfuscated form of the puzzle is its solution. Any of a
number of games can then be played where one or more users
attempt to solve such obfuscated puzzles.

In accordance with exemplary aspects described herein,
the inventor discloses a method comprising: (1) providing an
obfuscated puzzle to a player, the obfuscated puzzle being
associated with a solution, (2) receiving a proposed solution
to the obfuscated puzzle from the player, (3) comparing the
received proposed solution with the solution associated with
the obfuscated puzzle, and (4) in response to the comparison,
determining whether the player’s proposed solution was cor-
rect, and wherein the method steps are performed by a pro-
cessor. These method steps can be performed with respect to
a plurality of players, and a processor can administer a game
between the players to reward a player whose proposed solu-
tion is determined to be correct. Furthermore, if desired, the
method may further comprise a processor (1) receiving a
plurality of characters from the player, (2) performing an
autocorrection algorithm on the received characters to gener-
ate a corrected character string for the received characters,
and (3) providing the corrected character string to the player
as an option for submission as a proposed solution to the
obfuscated puzzle. The inventor also discloses an apparatus
and computer program product corresponding to such meth-
ods.

In accordance with additional exemplary aspects described
herein, the inventor discloses a method comprising: (1) pro-
viding a puzzle character string to a player, the puzzle char-
acter string comprising one or more obfuscated words,
wherein the one or more obfuscated words are configured to
be de-obfuscated by an autocorrection algorithm, the puzzle
character string having an associated solution, the solution
including the de-obfuscated word for each obfuscated word
in the puzzle character string, (2) receiving a proposed solu-
tion to the puzzle character string from the player, (3) testing
the proposed solution for correctness, and (4) in response to
the testing indicating that the proposed solution was correct,
providing a reward to the player, and wherein the method
steps are performed by a processor. The inventor further dis-
closes a corresponding apparatus and computer program
product.

Still further, the inventor discloses a method comprising
administering a game between a plurality of players where a
plurality of obfuscated puzzles are presented to the players,
each obfuscated puzzle having an associated solution,
wherein the administering step comprises (1) presenting an
obfuscated puzzle to the players, the obfuscated puzzle hav-

US 9,381,423 B2

3

ing an associated solution, (2) testing a proposed solution
from a player for correctness, (3) in response to the testing,
providing a reward to player who provided a proposed solu-
tion found to be correct, and (4) repeating the presenting,
testing, and reward providing steps for a different obfuscated
puzzle as part of the game. The game can comprise a broad-
cast game show. Also, the administering step can further
comprise: (1) providing the players with a computing device,
the computing device configured to (i) receive a character
string input from a user through a standard keyboard, (ii)
perform an autocorrection algorithm on the character string
input, and (3) display a corrected character string in response
to the performed autocorrection algorithm, and (2) permitting
the players to use the computing devices in an attempt to solve
the obfuscated puzzles.

Moreover, the inventor discloses a method comprising: (1)
receiving a character string input from a user, the character
string input to serve as a solution to an obfuscated puzzle, (2)
automatically generating an obfuscated puzzle from the
received character string input, and (3) creating a data struc-
ture that associates the generated obfuscated puzzle with the
character string input from which it was generated and which
is to serve as its solution, and wherein the method steps are
performed by a processor. The automatically generated
obfuscated puzzle can then be shared with another user for the
another user to attempt solution thereof.

These and other features and advantages of the present
invention will be apparent to those having ordinary skill in the
art upon review of the teachings in the following description
and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a) and () depict an example of how a obfuscated
puzzle game can operate.

FIG. 1(c) depicts examples of different environments in
which an obfuscated puzzle game can be played.

FIG. 2 depicts an exemplary networked computer system
configured to execute an obfuscated puzzle game.

FIG. 3 depicts an exemplary process flow for a processor to
execute when administering an obfuscated puzzle game.

FIG. 4(a) depicts an exemplary portable computing device
on which an obfuscated puzzle game can be played.

FIG. 4(b) depicts an exemplary mobile application
arrangement for executing an obfuscated puzzle game.

FIGS. 5(a) and (b) depict exemplary user interface screens
for an obfuscated puzzle game.

FIG. 6 depicts an exemplary process flow for a user com-
puting device to execute when an obfuscated puzzle game is
played by a user.

FIG. 7 depicts an exemplary data structure whereby obfus-
cated puzzles are associated with their corresponding solu-
tions.

FIG. 8 depicts exemplary data structures whereby words
are associated with obfuscated versions of those words,
wherein the obfuscated word versions are configured to be
de-obfuscated by an autocorrection algorithm.

FIG. 9 depicts an exemplary process flow for execution to
generate an obfuscated puzzle from a solution.

FIG. 10(a) depicts an exemplary process flow for an
embodiment whereby an obfuscated puzzle game is deployed
as a smart phone “app”.

FIG. 10(b) depicts an exemplary user interface screen for
the game shown by FIG. 10(a).

FIG. 11 depicts an exemplary process flow for an embodi-
ment whereby a user generates an obfuscated puzzles for
sharing with another user.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 12 depicts an exemplary user interface screen for the
sharing embodiment of FIG. 11.

DETAILED DESCRIPTION

FIG. 1(a) depicts an example of how an obfuscated puzzle
game can operate. An obfuscated puzzle such as “Yp nr ptbor
ri br” can be presented to a plurality of players. One or more
words of the obfuscated puzzle are configured for de-obfus-
cation by an autocorrection algorithm. In the example of FIG.
1(a), all of the words of the obfuscated puzzle are obfuscated
words. However, it should be understood that this need not be
the case. For example, only one word ofthe obfuscated puzzle
need be an obfuscated word that is configured for de-obfus-
cation by an autocorrection algorithm. Further still, the obfus-
cated puzzle need not take the form of a multi-word phrase.
For example, the obfuscated puzzle can be a single obfus-
cated word.

Inthe example of FIG. 1(a), the solution for the obfuscated
puzzle “Yp nr ptborri br” is “To be or not to be”. This solution
can be ascertained by typing the obfuscated word string “Yp
nr pt bor ri br” into a software application configured to
execute autocorrect software such that the autocorrect soft-
ware determines that (1) the word “To” should be used in
place of “Yp”, (2) the word “be” should be used in place of
“nr”, (3) the word “or” should be used in place of “Pt”, (4) the
word “not” should be used in place of “bor”, (5) the word “to”
should be used in place of “ri”, and (6) the word “be” should
be used in place of “br”.

If Player 1 is the first person to solve the obfuscated puzzle,
he or she can be declared the “winner” (see FIG. 1(5)). Any of
a number of “rules of the game” can be employed by such an
obfuscated puzzle game. For example, the obfuscated puzzle
can be presented to each player at the same time, and the first
player to solve the puzzle can be deemed the winner. As
another, example, each player can take turns in attempts to
solve the obfuscated puzzle. In yet another example, the
players can play asynchronously and where timers are used to
track which player is able to solve the obfuscated puzzle in the
shortest amount of time. Still further modes of play can be
employed.

Furthermore, in an exemplary embodiment, each player
can be provided with a computing device, where such com-
puting device is configured with text input capabilities (e.g., a
display screen and keyboard, which may take the form of a
touchscreen and virtual keyboard displayed on the touch-
screen) that are coupled with autocorrect software. In such an
embodiment, each player can use the computing device in
his/her attempt to solve the obfuscated puzzle.

In another exemplary embodiment, rather than providing
each player with access to autocorrect software, each player
can be provided with an image of a standard keyboard (e.g., a
QWERTY keyboard). The player can then use such an image
of the standard keyboard as an aid to solve the obfuscated
puzzle. As is well-known, most autocorrection algorithms are
premised on the expectation of typographical errors that are a
function of the proximity of various letters to each other on
the keyboard (e.g., because the letters “u” and “i” are adjacent
ona QWERTY keyboard, it can be expected that a typist will
often mistakenly type a “u” when an “i” was meant (or vice
versa). Thus, by visually presenting how the different letters
are arranged on the standard keyboard, the user can assess the
appropriateness of possible solutions to the obfuscated
puzzle.

The inventor further notes that obfuscated puzzle games
can be played in a variety of contexts, as depicted in FIG. 1(c).
For example, one context can be as a mobile application

US 9,381,423 B2

5

executed by a portable computing device such as a smart
phone as shown in FIG. 1(¢). With such a context, a server can
communicate an obfuscated puzzle to a smart phone over a
network, and a mobile application (or “app”) is executed by
the smart phone to play the game. Autocorrect software resi-
dent on the smartphone can optionally be used as an aid for
the playerto solve the obfuscated puzzle. Answers in the form
of proposed solutions can be communicated from the smart
phone to the server via the network, and the server can test
those answers for correctness, as well as provide additional
functionality such as keeping time (e.g., how long did it take
the player to solve the puzzle), and keeping score. It should be
understood that any of a number of scoring metrics can be
used by the game (e.g., awarding a fixed number of points for
each correct answer, employing a time reward that provides
higher scores for quicker correct answers, etc.).

As another example, a website context can be employed as
shown in FIG. 1(c¢). A browser on a player’s computer can
access a website page for the obfuscated puzzle game on the
server via a network such as the Internet. In this example, the
autocorrect software can be executed by the server-side rather
than the client-side. Thus, as the user inputs text strings
through the browser, these text strings can be communicated
over the network to the server for processing by the autocor-
rect software. Any corrected strings from the autocorrect
software can be communicated back to the user through the
website page. When a proposed solution is sent to the server,
the server can process the proposed solution as noted above.

While the exemplary website context shows the autocor-
rect software being resident on and executed from the server
while the exemplary app context shows the autocorrect soft-
ware being resident on and executed from the smart phone, it
should be understood that the server in the app context can
execute the autocorrect software and the client computer in
the website context can execute the autocorrect software if
desired by a practitioner.

As yet another example, a game show context can be
employed as shown in FIG. 1(¢). The game show can be
conducted on a broadcast medium such as television, cable, or
satellite. A host will present obfuscated puzzles to players for
solution. The players will compete with each other to solve
the puzzles and accumulate points or prizes. The host and
other personnel would then administer the game between the
various players. In such a game show context, each player can
be provided with (or permitted access to) a computing device
that is able to receive and display text entries as well as
execute autocorrect software in the course of doing so. The
players can then use these computing devices in an attempt to
solve the obfuscated puzzle. Alternatively, each player can be
provided with (or permitted access to) an image of a standard
keyboard as discussed above.

FIG. 2 depicts a networked computer system 200 for
implementing contexts such as the app context and the web-
site context of FIG. 1(c). In the example of FIG. 2, a server
202 is accessible to a plurality of user computing devices 206
via a network 208 such as the Internet.

The server 202 can be configured to access a database 204
in the course of administering game play. It should be under-
stood that the server 202 can comprise a processor and
memory that are configured to execute software for adminis-
tering an obfuscated puzzle game as described herein. The
server 202 can comprise one or more servers, as needed by a
practitioner of the invention. The database 204 can similarly
comprise one or more physical databases, as needed by a
practitioner of the invention.

The network 208 can be any data communications network
capable of communicating data between the server 202 and a

10

15

20

25

30

35

40

45

50

55

60

65

6

user computing device 206. An example of a suitable network
208 is the Internet. However, it should be understood that the
network 208 can comprise a plurality of networks that inter-
connect to form a larger network, including networks such as
cellular data networks and other wireless data networks.

The user computing devices 206 can also take any of a
number of forms. Each user computing device 206 can com-
prise a processor and memory that are configured to execute
the game play software as described herein. Examples of
suitable user computing devices 206 include standard per-
sonal computers (PC) or laptop computers, which can include
network connectivity for accessing the server and a browser
program for accessing websites. Another example of a suit-
able user computing device 206 is a mobile computing device
such as a smart phone or tablet computer. Still further, the user
computing device 206 can take the form of a special purpose
device/terminal whose processing capabilities are largely
limited to executing the game play described herein.

FIG. 3 depicts a process flow for execution by a processor
(such as a processor resident in server 202) in an exemplary
embodiment to administer a multi-player obfuscated puzzle
game. At step 300, the processor selects an obfuscated puzzle.
A database may store a plurality of obfuscated puzzles, and
the processor may employ any of a number of techniques to
select which obfuscated puzzle is to be presented to the play-
ers. For example, the selection can be a random selection. As
another example, if the obfuscated puzzles have anassociated
categorization relating to degree of difficulty, the processor
can be configured to select obfuscated puzzles such that ini-
tially an “easy” puzzle is selected, while progressively
increasing the degree of difficulty during successive selec-
tions. As yet another example, the processor can select an
obfuscated puzzle associated with a degree of difficulty
desired by the players (e.g., the players indicating that “hard”
puzzles are desired).

At step 302, the processor delivers the selected obfuscated
puzzle to the players for attempted solution. In a networked
embodiment such as that shown by FIG. 2, a server 202 can
communicate the selected obfuscated puzzle to a plurality of
user computing devices 206 via network 208.

At step 304, the processor receives proposed solutions
from the players. In a networked embodiment such as that
shown by FIG. 2, the server 202 can receive incoming com-
munications from the user computing devices 206 via the
network 208 that include proposed solutions from the players.

At step 306, the processor processes the received proposed
solutions, and at step 308, the processor identifies a winner
based on the processing at step 306. If the game is to continue
(see step 310), then the processor returns to step 300 to select
a new obfuscated puzzle. Otherwise, the process flow termi-
nates.

Steps 320-326 elaborate on the processing performed at
step 306. At step 320, the processor identifies which of the
received proposed solutions is deemed “earliest”. The user
computing devices 206 can be configured to time stamp the
proposed solutions, and the processor can identify the earliest
proposed solution on the basis of such time stamps. Similarly,
the processor can time stamp its receipt of proposed solutions
from the user computing devices 206 and then identify the
“earliest” of the received proposed solutions on that basis. At
step 322, the processor checks the identified proposed solu-
tion for correctness. To do so, the processor can access a data
structure in a memory that associates the obfuscated puzzle
with its correct solution. If the proposed solution matches the
correct solution, then the process flow can proceed to step 308
where the player who first submitted the correct proposed
solution is identified as the winner. If the earliest proposed

US 9,381,423 B2

7

solution is deemed incorrect at step 322, then at step 324, the
processor selects the next earliest of the received proposed
solutions and returns to step 322. In this fashion, the process
flow can reward the player who first solves the obfuscated
puzzle.

It should be understood that the process flow of FIG. 3 is
exemplary only. For example, the game can be configured to
reward all correct answers rather than only the earliest correct
answer. In such an embodiment, for example, the players can
be provided with a time period in which to solve the obfus-
cated puzzle (e.g., 60 seconds), and all players who solve the
obfuscated puzzle in this time period can be identified as
winners. Still other variations are possible.

Furthermore, it should be understood that the same proces-
sor need not perform all of the steps in FIG. 3. For example,
some of the steps can be performed by a processor resident in
a server 202 and some of the steps can be performed by a
processor resident in a user computing device 206. Moreover,
a process flow similar to that shown by FIG. 3 can be
employed to implement a one-player game, in which case the
need to intermediate among multiple players is avoided. Fur-
ther still, for such a one-player game, it should be understood
that all of the process flow steps can be performed by a
processor resident in a user computing device 206 if desired
by a practitioner.

FIG. 4(a) depicts an exemplary user computing device 206
on which an obfuscated puzzle game can be played. In the
example of FIG. 4(a), the user computing device can be a
mobile computing device. The mobile computing device can
be a smart phone (e.g., an iPhone, a Google Android device,
a Blackberry device, etc.), tablet computer (e.g., an iPad), or
the like. The mobile computing device preferably employs a
touchscreen or the like for interacting with a user. However, it
should be understood that any of a variety of data display
techniques and data input techniques could be employed by
the mobile computing device. For example, to receive inputs
from a user, the mobile computing device need not necessar-
ily employ a touchscreen—it could also or alternatively
employ a keyboard or other mechanisms such as voice cap-
ture-to-text translation. The mobile computing device 206
shown by FIG. 4(a) may comprise a processor 400 and asso-
ciated memory 402, where the processor 400 and memory
402 are configured to cooperate to execute software and/or
firmware that supports operation of the mobile computing
device 206. Furthermore, the mobile computing device 206
may include an I/O device 404 (e.g., a touchscreen user inter-
face for graphically displaying output data and receiving
input data from a user), wireless /0O 408 for sending and
receiving data, a microphone 410 for sensing sound and con-
verting the sensed sound into an electrical signal for process-
ing by the mobile computing device 206, and a speaker 412
for converting sound data into audible sound. The wireless
1/0 408 may include capabilities for making and taking tele-
phone calls, communicating with nearby objects vianear field
communication (NFC), communicating with nearby objects
via radio frequency (RF), and/or communicating with nearby
objects via BlueTooth. The mobile computing device may
also include features such as a camera, a GPS positioning
system, etc. These components are now resident in many
standard models of smart phones and other mobile computing
devices.

FIG. 4(a) also shows an autocorrect program 406 that is
resident on the mobile computing device 206. Such an auto-
correct program 406 can be loaded into memory 402 for
execution by the processor 400. An autocorrect program 406
is another standard pre-existing or legacy feature on most
models of smart phones and other mobile computing devices.

10

15

20

25

30

35

40

45

50

55

60

65

8

Execution of the autocorrect program 406 will cause an auto-
correction algorithm to be applied to character inputs by a
user through the I/O device 404. Thus, when the user enters a
character string such as “cokxsmo” into an email or a text
message through the mobile computing device, the autocor-
rect program 406 can be executed by the processor 400 to
identify “volcano” as a corrected string for “cokxsmo”. As
previously discussed, the autocorrect program 406 can be
configured to implement any of a number of different types of
autocorrection algorithms.

A mobile application 450 (or “app”) executed by the
mobile computing device can operate as the medium through
which a user plays an obfuscated puzzle game. FIG. 4(b)
depicts an exemplary mobile application 450 for an exem-
plary embodiment. Mobile application 450 can be installed
on the mobile computing device for execution by processor
400. The mobile application 450 preferably comprises a plu-
rality of computer-executable instructions resident on a non-
transitory computer-readable storage medium such as a com-
puter memory. The instructions may include instructions
defining a plurality of graphical user interface (GUI) screens
for presentation to the user through the I/O device 404. The
instructions may also include instructions defining various
1/O programs 456 such as:

a GUI data out interface 458 for interfacing with the I/O
device 404 to present one or more GUI screens 452 to the
user;

a GUI data in interface 460 for interfacing with the I/O
device 404 to receive user input data therefrom;

a wireless data out interface 462 for interfacing with the
wireless /O 408 to provide the wireless I/O with data for
communication over the network (e.g., to send proposed
solutions to an obfuscated puzzle to a server); and

a wireless data in interface 464 for interfacing with the
wireless 1/0O 408 to receive data communicated over the
network to the mobile device for processing by the
mobile application 450 (e.g., to receive obfuscated
puzzles from a server for use in a game).

The instructions may further include instructions defining a
control program 454. The control program 454 can be con-
figured to provide the primary intelligence for the mobile
application 450, including orchestrating the data outgoing to
and incoming from the /O programs 456 (e.g., determining
which GUI screens 452 are to be presented to the user).

If desired by a practitioner, the mobile application 450 can
be configured to provide autocorrect functionality to users.
For example, the I/O programs 456 can include an interface to
the mobile computing device’s resident autocorrect program
406. Through this interface, character strings input by a user
through the mobile application 450 can be passed to the
autocorrect program 406 for processing and suggested cor-
rected string can be passed back to the mobile application 450
from the autocorrect program 406. As another example, the
control program 454 can include its own autocorrect program
for execution by the mobile application 450.

FIG. 5(a) depicts an exemplary GUI screen 500 for display
on a mobile computing device 206 in connection with mobile
application 450. The GUI screen 500 includes a portion 502
that displays an obfuscated puzzle to the user. The GUI screen
500 also includes a character entry user input portion 504,
where the character entry user input portion 504 is configured
to receive an input of characters from the user that represent
the user’s proposed solution to the obfuscated puzzle shown
in portion 502. A virtual touchscreen-based keyboard 508 can
also be displayed as part of the GUI screen 500. Keyboard 508
is preferably a standard layout keyboard such as a QWERTY
keyboard. User selection of characters on keyboard 508 will

US 9,381,423 B2

9

cause a character string to be generated in portion 504. Once
a user has created a character string in portion 504 that the
user believes is a solution to the obfuscated puzzle, the user
can select the “submit™ button 506 to test the proposed solu-
tion for correctness. If the user wants to edit the character
string that he or she has entered in portion 504, the editing
buttons 508 and 510 (delete/start over and backspace, respec-
tively) can be selected.

The GUI screen 500 can also include additional user-se-
lectable buttons relating to game play. For example, a button
514 can be included that is user-selectable to initiate a new
one-player obfuscated puzzle game. A button 516 can be
included that is user-selectable to initiate a new multi-player
obfuscated puzzle game. Upon selection of button 516, the
server can be accessed to arrange an obfuscated puzzle game
among a plurality of'users of the user computing devices 206.
A button 518 can also be included that is user-selectable to
join an existing multi-player game (similar in effect to button
516, but where a user joins a networked game that may
already be in progress). A button 520 can be included that is
user-selectable to access another GUI screen through which
the user can adjust the settings for an obfuscated puzzle game.

Still other configurations for the GUI screen 500 can be
employed. For example, the GUI screen 500 can include a
timer that identifies an amount of time in relation to the user’s
attempt to solve the puzzle (e.g., a countdown clock or a
count-up clock). Such a time can be configured to begin when
a user first starts entering text via the keyboard 508 or within
a set amount of time from when the obfuscated puzzle is first
presented to the user in portion 502. Furthermore, additional
user-selectable buttons can be provided that correspond to
things such as “How to Play”, “Rules”, “Choose Category” (if
multiple categories of obfuscated puzzles or game play are
available), “Backup” or “Previous”, “Undo”, “Play with a
Friend”; “Start” (with respect to a timer, if a timer is
employed), “Hint”; “Resume Game™; “Pause”; “Single
words” (if the user has the option of attempting to solve an
obfuscated puzzle that is a single word), and “Phrases” (if the
user has the option of attempting to solve an obfuscated
puzzle that is an obfuscated phrase). With a “Play with a
Friend” option, the mobile application can be configured for
integration with a social network such as Facebook or the like,
whereby people who are “friends” of the user can access and
play the obfuscated puzzle game with the user through their
social network account.

FIG. 5(b) depicts an exemplary GUI screen 550 for a user
to control the settings for the obfuscation puzzle game. The
exemplary GUI screen 550 can include user-configurable
settings 552 for parameters such as whether the autocorrect
features are enabled and whether a timer is shown to the user.
A slider bar or other user input mechanism can be provided
for the user to define such settings. If the user chooses to
enable the autocorrect feature, then an autocorrect program
will execute while the user inputs characters into portion 504
of GUI screen 500 so as to suggest corrected versions of the
user’s input characters. Thus, if the user were to type in the
obfuscated puzzle, it may very well be the case that the
autocorrect feature will reveal the solution to the puzzle.
However, depending on how a practitioner implements the
system, this is not guaranteed, as explained below. If the user
chooses to disable the autocorrect feature, then the autocor-
rect program will not execute, and the user will have to rely on
his orher own intuitions to solve the obfuscated puzzle. In this
regard, the user can leverage the keyboard display 508 of GUI
screen 500 to guess how the obfuscated puzzle may translate
to its solution by noting which letters are proximate to the
letters of the puzzle on keyboard 508. It should be understood

10

15

20

25

30

35

40

45

50

55

60

65

10

that the settings options shown in FIG. 5(b) are exemplary
only, and a practitioner may choose to include more, fewer,
and/or different settings options for different embodiments.

FIG. 6 depicts an exemplary process flow for execution by
a processor such as processor 400 to implement obfuscated
puzzle game play by a user computing device 206. For
example, the process flow of FIG. 6 can be embodied by
control program 454. At step 600, the obfuscated puzzle is
displayed (see portion 502 of GUI screen 500). At step 602,
the processor receives user input for a proposed solution to
the displayed obfuscation puzzle. This input will take the
form of a series of characters entered by the user (e.g., via
keyboard 508 of GUI screen 500). At step 604, the processor
checks whether the autocorrect feature is enabled.

If the autocorrect feature is enabled, then at step 606, the
processor executes the autocorrect program as the user enters
characters at step 602. If the autocorrect program determines
that a corrected character string should be presented to the
user, the correction is so presented to the user. Furthermore, it
is expected that the autocorrect program will be configured to
update its correction suggestions as the user enters additional
input characters. From step 606, the process flow proceeds to
step 608. At step 608, the processor awaits user selection of
the “submit” button 506 or the like. Upon selection of the
“submit” button, the processor submits the user input (possi-
bly auto-corrected) as a proposed solution. In a networked
embodiment, this may involve communicating the proposed
solution to the server via a network. In an embodiment where
proposed solutions are tested locally, this may involve initi-
ating a comparison between the proposed solution and the
correct solution.

Ifthe autocorrect feature is disabled, then the process flow
proceeds from step 604 to step 608, bypassing step 606. Thus,
with the autocorrect feature disabled, the user is expected to
rely on his or her own knowledge to solve the obfuscated
puzzle.

It should be understood that additional tasks can be per-
formed by control program 454 in connection with obfus-
cated puzzle game play. For example, the control program can
provide different modes of game play (one player versus
multi-player, different types of obfuscated puzzles, different
manners of scoring or tracking winners, etc.). As an example,
a game play mode can be configured to track how fast a player
can correctly solve an obfuscated puzzle (or a series of obfus-
cated puzzles). In such an arrangement, the mobile applica-
tion can track the user’s best time and compare each game’s
solution time against this best time, an average best time for
other players, or the best time for all other players. As another
example, if the autocorrect features are enabled, a game play
mode can be configured where the object of the game is to
solve the obfuscated puzzle before the autocorrect feature has
revealed the solution in full. Furthermore, in such an arrange-
ment, the user could be awarded a progressively higher score
for solving the puzzle as a function of a lesser reveal by the
autocorrect program (for example, if the user solves the
puzzle after the autocorrect program reveals the de-obfus-
cated first word of the puzzle, then the user would get a higher
score than if the puzzle was solved after the autocorrect
program had revealed two de-obfuscated words of the
puzzle).

FIG. 7 depicts an exemplary data structure 700 that can be
leveraged by a processor when implementing an obfuscated
puzzle game. The data structure 700 can be stored in a
memory, and it is configured to associate obfuscated puzzles
(see column 702) with their solutions (see column 704). The
data structure 700 can take any of a number of forms, such as
relational data in a database, an XML data structure, or other

US 9,381,423 B2

11

forms. Furthermore, the data structure can be resident in a
server 202 (or database 204 accessible to server 202), a user
computing device 206, and/or elsewhere in a location that is
accessible to either or both of the server and user computing
device. If the data structure 700 is resident solely on the
server-side of the network 208, then it is expected that the user
computing devices 206 will need to communicate proposed
solutions to the server 202 to test those proposed solutions for
correctness. If the data structure is resident on the user com-
puting devices 206, it is expected that the user computing
devices 206 will be able to locally test whether a proposed
solution is correct.

The data structure 700 may also be optionally configured to
associate obfuscated puzzles with additional information
such as a category (see column 706), a difficulty (see column
708), etc. Such additional information can then be used when
selecting which obfuscated puzzles should be presented to a
user. Exemplary categories can include classifications such as
phrase, thing, song title, place, etc. It should be understood
that other items of additional information can also be associ-
ated with obfuscated puzzles, such as language (if the system
supports game play in multiple languages), a version of an
autocorrect program (if obfuscation is tied to a particular
version of an autocorrect program), a keyboard version (if the
obfuscation is tied to a specific keyboard layout (e.g., a
QWERTY keyboard or a keyboard arrangement where a
given key may correspondence to multiple characters (as is
found on some models of smart phones), etc.).

FIG. 8 depicts exemplary data structures 800 that can be
employed to associate words with one or more corresponding
obfuscations of those words, where the obfuscated words are
configured to de-obfuscate by an autocorrection algorithm.
The data structures 800 can be stored in a memory, and they
can serve as building blocks for multi-word obfuscated
puzzles. Each data structure may comprise a word (see col-
umn 802) and its associated obfuscated word (see column
804). Given that a plurality of different obfuscated words may
map to a word, each word in column 802 may be associated
with one or more obfuscated words in column 804. Moreover,
it should be understood that the same obfuscated word may be
associated with a plurality of different words in columns 802.
For example, as noted above, the obfuscated word “reisrer”
can be associated with the word “register” and the word
“twister”. As with data structure 700, the data structures 800
can take any of a number of forms, such as relational data in
a database, an XML data structure, or other forms, and the
data structures 800 can be resident in a server 202 (or database
204 accessible to server 202), a user computing device 206,
and/or elsewhere in a location that is accessible to either or
both of the server and user computing device. Further still,
each data structure 800 may optionally be configured to asso-
ciate words with one or more items of additional information
if desired by a practitioner. For example, each obfuscated
word in column 802 can be associated with a difficulty param-
eter. In such an instance, the difficulty of resolving obfuscated
word “tp” to the word “to” can be assigned a lower difficulty
than for resolving the obfuscated word “yp” to the word “to”
(given that in the “yp” situation, neither of the letters of the
obfuscated word are present in the corrected word, while in
the “tp” situation, there is only one letter’s worth of obfusca-
tion). A memory can be configured to store data structures
800 for a large number of words, including a full dictionary of
words if desired by a practitioner.

FIG. 9 depicts an exemplary process flow for execution by
a processor to generate an obfuscated puzzle from a solution
using the data structures 800. At step 900, the solution is
received (e.g., the phrase “To be or not to be” could be

25

30

40

45

12

received as a solution). As an example, the solution can be
received at step 900 as an input from a user.

At step 902, the solution is parsed into its component
word(s). For example, the phrase “To be or not to be” can be
parsed into the individual words “to”, “be”, “or”, “not”, “to”
and “be”.

At step 904, the processor selects an obfuscated word for
each component word that was parsed at step 902. To do so,
the processor can access the data structures 800 to identify the
data structure 800 corresponding to the word under consid-
eration. If only one obfuscated word is associated with the
word under consideration, then that obfuscated word can be
selected at step 904. If a plurality of obfuscated words are
associated with the word under consideration, then an algo-
rithm of some sort can be employed to make the selection. For
example, a randomization algorithm can be employed to ran-
domly select an obfuscated word from among the choices.
Alternatively, a round robin-type algorithm can be employed
where the first time a selection is made with respect to a word,
the first associated obfuscated word is selected while the
second time a selection is made with respect to that word, the
second associated obfuscated word is selected, and so on. Still
other selection mechanisms can be employed. For example, if
obfuscated words are associated in the data structures 800
with a difficulty parameter, and if the process flow of FIG. 9
is being executed to generate an obfuscated puzzle with a
defined degree of difficulty, then the difficulty associations in
the data structures 800 can be employed to make a selection.

After the processor has selected an obfuscated word for
each of the component words at step 904, the processor can
assemble the obfuscated puzzle at step 906 from the selected
obfuscated words. The processor can also store this obfus-
cated puzzle in a data structure 700 in association with its
solution. In such a manner, the obfuscated puzzle would then
be ready for use during game play.

If desired by a practitioner, the process flow of FIG. 9 can
be executed by server 202 or other computer with access to
database 204. A practitioner can also choose to have a pro-
cessor resident on a user computing device 206 execute the
process flow of FIG. 9 if desired.

Depending on the mode of game play desired by a practi-
tioner, it should be understood that by building obfuscated
puzzles on a word-by-word basis as described in connection
with FIG. 9, the resultant obfuscated puzzle may not be
directly resolvable by simply typing the full obfuscated
puzzle in an input field for processing by an autocorrect
program. In such instances, it is expected that this nuance will
enhance the interestingness of the game to a user. That is,
typing the full obfuscated puzzle may not result in the auto-
correct program yielding the correct solution, particularly in
game play modes where the solution is to be a well-known
phrase or other particular phrase. The reasons for this can be
numerous. For example, some autocorrect programs are con-
text-sensitive. Thus, if the obfuscated puzzle is a phrase with
multiple words, other words in the puzzle may cause the
autocorrect program to map a character string to the wrong
word (relative to the solution). As another example, because
the same obfuscated word may map to multiple corrected
words (e.g., the “reisrer” example previously used above),
there is no guarantee that the autocorrected word will be the
correct word for the solution. As still another example,
because many autocorrect programs are adaptive, previous
text entries by a user (via the mobile application 450 or other
applications on the computing device) may cause a user’s
particular version of an autocorrect program to behave differ-
ently than the autocorrection algorithm that is relevant to
de-obfuscating the obfuscated puzzle. Once again, such a

US 9,381,423 B2

13

variety in autocorrect programs can enhance the interesting-
ness of game play. However, if a practitioner wishes to mini-
mize the effect of adaptive autocorrect programs, the practi-
tioner can configure the mobile application 450 to access a
standardized and static autocorrect program such that all
users leverage the same autocorrect functionality.

FIG. 10(a) depicts another exemplary process flow for an
embodiment whereby an obfuscated puzzle game is deployed
asasmart phone “app”. A mobile application 450 that embod-
ies the game is available for download from an app store 1002,
such as the app store available from Apple. At step 1004, the
game app is selected, and at step 1006 it is paid for. The app
450 is then downloaded into a smart phone and loaded into the
workspace of the smart phone’s processor for execution (step
1008). A database (such as a database for data structure 700
and optionally data structures 800) can also be loaded into the
smart phone for the app (step 1010).

To start play, the app can randomly sort the database (step
1012) and read the sorted database (step 1014) to identify an
obfuscated puzzle for presentation to the user. A timer can be
initialized (step 1016), and the obfuscated puzzle is presented
to the user (step 1018). FIG. 10(a) shows an example of an
obfuscated puzzle that can be selected from the database. This
example of a puzzle presents 4 obfuscated words in one
column and presents 4 corrected words in another column.
The object of the puzzle game is for the user to match the
obfuscated words with their correct word counterparts in as
little time as possible. In this example, “cokxsmo” should be
matched to “volcano”, “reisrer” should be matched to
“twister”, “rskem” should be matched to “taken”, and
“lsaaoe” should be matched to “lassie”. The GUI screen can
also be configured to provide a text entry field for the user to
enter character strings corresponding to the obfuscated
words. The autocorrect program can then operate at step 1020
to suggest corrections to the obfuscations. From such correc-
tions (or the user’s own intuitions), the user can attempt to
match obfuscated words to correct words at step 1022. For
example, the GUI screen can be configured to permit the user
to drag an obfuscated word to a correct word to create a
pairing or vice versa.

At step 1024, the process flow can check whether the user
has completed the puzzle. If the puzzle is successfully com-
pleted, points can be awarded to the user (e.g., in an amount
that is a function of how long it took the user to solve the
puzzle), and a score can be displayed (step 1026). At step
1028, the process flow determines whether to quit the game
(e.g., in response to user input) or whether to continue with a
new puzzle from the database.

FIG. 10(b) depicts an exemplary GUI screen 1050 that is
configured to support game play for an obfuscated puzzle
such as that shown in FIG. 10(a). The GUI screen 1050 can
include a portion 1052 where the different obfuscated words
are shown in one column and their corresponding solutions
are shown in another column, but where each row in which an
obfuscated puzzle resides does not necessarily contain that
puzzle’s corresponding solution. Thus, the player will need to
match each obfuscated word in one column with its solution
in the other column as part of the game. To facilitate such
matching, portion 1052 can be configured to be responsive to
touch input to drag an obfuscated puzzle word toward any of
the solution words (or vice versa) to create a pairing. When
the user has finished pairing his/her guesses in such a fashion,
the user can select the “submit” button 1054 to test his/her
proposed solutions.

As an aid to solution, the GUI screen 1050 can be config-
ured to include a text entry portion 1056 in which a user enters
text via a keyboard 1058. The autocorrect program can oper-

10

15

20

25

30

35

40

45

50

55

60

65

14

ate on the characters shown in portion 1056 to generate a
corrected word for display in portion 1060. Thus, by entering
the obfuscated words in portion 1056 via the keyboard 1058,
a user can be alerted as to possible solutions to the puzzle.

FIG. 11 depicts an exemplary process flow for execution by
a processor for another exemplary embodiment. In the
embodiment of FIG. 11, users are able to generate obfuscated
puzzles for sharing with other users. A mobile application 450
for execution by a smart phone or the like can be configured
to implement the process flow of FIG. 11. At step 1100, a
player generates an obfuscated puzzle. The technique
described in connection with FIGS. 8 and 9 can be executed to
generate such obfuscated puzzles in response to user input.
For example, as shown in FIG. 12, a GUI screen 1200 can be
configured to solicit an input of a solution from a user in text
entry portion 1202. The user can enter the solution in portion
1202 via keyboard 1214. Delete button 1216 and backspace
button 1218 can be used to edit any text entered by the user in
portion 1202. In response to the selection of button 1206, the
process flow of FIG. 9 can be executed in conjunction with
data structures 800 to generate an obfuscated puzzle from the
solution. Portion 1204 of the GUI screen 1200 can be config-
ured to display this generated obfuscated puzzle.

Ifthe user believes the generated obfuscated puzzle shown
in portion 1204 serves as a good puzzle for sharing with one
or more other users, the user can select button 1212 to initiate
execution of step 1102 in FIG. 11. At step 1102, the generated
obfuscated puzzle is shared with one or more other users. For
example, upon selection of button 1212, the user can be
prompted to identify the one or more other users with whom
the generated obfuscated puzzle is to be shared (for example,
by entering user identifiers for such other users). If the system
is configured to maintain a social network among users such
that some users are deemed “friends” of each other, a GUI
screen can be displayed that identifies the user’s “friends” for
selection with regard to sharing. The user computing device
206 can then communicate the generated obfuscated puzzle
to the server 202 along with an identification of the user(s)
with whom the generated obfuscated puzzle is to be shared.
The server 202 can then deliver the shared puzzle to user
computing devices associated with the identified user(s).

Upon receipt of the shared puzzle (step 1104), the other
user(s) can then attempt to solve the shared obfuscated puzzle
using techniques such as those described in connection with
FIGS. 5(a) and 6. It is believed that such as “quiz a friend”
feature may provide a fun and thought-provoking way of
different players to challenge each other to solve obfuscated
puzzles. A scoring system can be instituted between such
players to track who is able to more quickly and/or effectively
solve each other’s puzzles.

Returning to FIG. 12, it should be noted that the GUI screen
1200 can also be configured with a button 1208 that is opera-
tive upon user selection to cause the process flow of FIG. 9 to
be re-executed to generate a new obfuscated puzzle for the
same solution that was entered into portion 1202. As noted in
connection with FIGS. 8 and 9, in instances where a word in
a solution maps to multiple obfuscated words, different
executions of the FIG. 9 process flow can result in different
obfuscated puzzles being generated for the same solution.
Thus, through the use of button 1208, a user can attempt to
generate a puzzle deemed particularly challenging if desired.
Furthermore, if the user decides that a different solution
should be used, button 1210 can be selected to fully remove
the text entered in portion 1202 so the user can start over with
a new solution (similar in function to button 1216).

It should be understood that the examples described herein
for obfuscated puzzle games are exemplary only. Any of a

US 9,381,423 B2

15

number of different ways of playing an obfuscated puzzle
game can be implemented. For example, if a player wants to
guess single words the app screen can be configured to show
a list of correctly spelled words (and where each word can be
constrained to include at least a defined number of letters
(e.g., 5 letters)) on one portion of the screen and the reverse-
autocorrect obfuscations of those words on another portion of
the screen (see, for example, FIG. 10(b)). The player can
either guess which correct words correspond to which obfus-
cated words without inputting letters or by inputting letters
one at a time to see what the word might be before the
autocorrect software fully corrects the word from the input
letters. The object of such a game would be to match the
correct words with their corresponding obfuscated words
before the autocorrect software does it for you. If the auto-
correct software does give you the word before you guess it,
it will remove that word in the choices list. If the player can
guess the word before inputting all the letters, he/she can
touch the screen to show his/her choice which will stop the
clock and notify the player if the answer is correct or not.
Higher scores can be awarded for solving the puzzles using
fewer input letters for processing by the autocorrect software.

Moreover, if a player wants to try for a group of words as in
a saying or quote, each word would not need to be more than
5 letters. If the player can guess the answer before inputting
all the words, he/she can stop the timer by touching the screen
to choose one of three options shown. The player with the
highest score, earned by having the correct answers in the
quickest time, wins the round/phase or game.

Also, to elaborate on the game show context described
above in connection with FIG. 1(c), it should be understood
that a number of different game show embodiments are pos-
sible for obfuscated puzzle games. For example, a plurality of
different players (e.g., three players) will be playing against
each other at the start of the game. The game show can
proceed in a number of phases or rounds that are designed to
eliminate a player until only one player remains, at which
time that remaining player can try for the win. Each player
would be given or read the rules of the game, and will sign an
agreement to play by the rules prior to airing.

The host of the game show will describe the basic rules and
how to play the game at the beginning of each show for the
audience’s (studio and home) benefit to follow/play along.

For game play, each player can be given an identical hand-
held computing device (e.g., a smart phone or dedicated ter-
minal that is able to execute an autocorrect program). Each
instance of the autocorrect program can be identical such that
it will produce the same results for the same inputs, although
that need not be the case. For example, to introduce chance
and variety, the players can be given access to computing
devices with different versions of autocorrect programs, and
a mechanism can be implemented for deciding how the dif-
ferent computing devices are distributed among the players
(e.g., random chance, a lead-in puzzle, a trivia question, etc.).
The host will announce and show the category that the solu-
tions will fit into, such as movie titles, song lyrics, famous
people, famous phrases, etc. Each play and phase of the game
will be timed.

The obfuscated puzzle will be shown to each player, studio
member and home audience at the same time. The players can
be permitted to use the computing devices to enter the obfus-
cated puzzle in an attempt for the autocorrect program to
generate the solution. With each letter typed in, there is a
possibility that the autocorrect program may yield the solu-
tion even if the player has not yet typed in all of the letters of
the obfuscated puzzle. The players will compete to be the first
to correctly guess the solution to the obfuscated puzzle.

10

15

20

25

30

35

40

45

50

55

60

16

At a first phase/round ofthe game, each player can be given
the same obfuscated puzzles that correspond to short phrases
of'5 to 10 obfuscated words. Each player will input the letters
shown to come up with the correct words in the phrase
(through operation of the autocorrect program). Although the
players are not timed during this first phase, a player may
guess the correct phrase before having entered all the letters
of the obfuscated puzzle if he/she thinks he/she knows the
solution. At that time, such a player will stop the clock to say
or guess the solution. If the solution is incorrect, play contin-
ues with the next short phrase and no one wins points/money
for that first obfuscated puzzle. This phase of the game would
continue for a predetermined amount of time, or number of
rounds. At the conclusion of the first phase, the lowest scoring
player would be eliminated from the competition, and the
game continues to a second round/phase.

The second phase/round of the game can be a lightning
round. The remaining players are shown a plurality of obfus-
cated puzzles (e.g., 10 puzzles), where each obfuscated
puzzle consists of a single obfuscated word. For challenge, it
would be preferred that each obfuscated word have at least 5
characters. Once again, the remaining players will have
access to the computing devices to leverage an autocorrect
program to arrive at solutions. The players can be shown all of
the obfuscated puzzles at the same time, and they will have a
limited amount of time (e.g., a 30 second or 60 second count-
down clock) to come up with solutions to all of the obfuscated
puzzles. If one of the players is the first to correctly guess all
solutions prior to the clock running out, that player would be
the winner for the round. If time runs out and no one has yet
correctly provided all solutions, then whoever has the most
number of correct solutions would win the round. If they have
the same number of correct solutions, then a one-puzzle tie-
breaker can be used to identity the winner. The player who has
the highest score from the two combined phases/rounds at the
end of the lightning round would then go on to play the final
round alone for an opportunity to win additional rewards.

The third and final phase/round has only one player. In this
phase, the player is given an obfuscated puzzle corresponding
to a phrase that comprises 15 to 20 obfuscated words chosen
from a category that will be announced prior to play. The
player must come up with the correct solution within a
defined time period (e.g., 30 seconds). The player can guess
the solution without having to input each character of the
puzzle into the computing device for autocorrection if he/she
thinks he/she knows the answer. But, it would probably be
wise for the player to finish the 30 seconds to make sure that
he/she maximizes his/her chance for success.

To increase the challenge, a practitioner could choose to
limit how the autocorrect program is used during the final
round (or any round for that matter). For example, the com-
puting device can be configured to only permit a limited
number of characters (less than all of the characters of the
obfuscated puzzle) to be entered into the computing device
for autocorrection (e.g., a 10 or 15 character limit). In that
way, the player would be forced to focus his/her autocorrec-
tion efforts on obfuscated words of the puzzle that may pos-
sibly yield clues as to the other components of the phrase.
Similar limitations could be enforced during earlier rounds of
game play.

While FIG. 1(c¢) describes three different contexts for
obfuscated puzzle game play, it should be understood that still
other contexts are possible. For example, a board game could
be used as the platform through which the obfuscated puzzle
game is played. The board game can include a playing surface
(e.g., a foldable board) with indicia printed thereon for guid-
ing game play. A set of cards that include obfuscated puzzles

US 9,381,423 B2

17

and their solutions can be included, as can a set of dice or
other chance resolving means to further guide game play
(e.g., a spinner, an electronic number generator, etc.). The
printed indicia can include markers for items such as a start
position and finish position. The indicia can further include a
number of spaces between start and finish. The game can be
configured where each player begins at the start position and
the first player to reach the finish position wins. Players can
advance by correctly solving an obfuscated puzzle that is
printed on a card. The cards can also include the solution for
the obfuscated puzzle. A dice or other chance resolving
means can be used to identify how far each player travels
during a turn. Each player can be given one puzzle per turn or
be permitted to maintain their turn so long as correct solutions
to obfuscated puzzles are given. Optionally, a timer can be
provided to limit an amount of time that a player has to guess
a solution. Furthermore, each player can optionally be per-
mitted to solve an obfuscated puzzle using a computing
device configured with an autocorrect program as previously
described. The computing device(s) can either be included
with the game, or the players can be required to bring their
own.

While the present invention has been described above in
relation to exemplary embodiments, various modifications
may be made thereto that still fall within the invention’s
scope, as would be recognized by those of ordinary skill in the
art. Such modifications to the invention will be recognizable
upon review of the teachings herein. As such, the full scope of
the present invention is to be defined solely by the appended
claims and their legal equivalents.

What is claimed is:

1. A method comprising:

maintaining a plurality of data structures in a memory that

provide autocorrection in reverse with respect to a plu-
rality of words, each data structure comprising a word
and at least one obfuscated word associated with that
word, each obfuscated word configured for de-obfusca-
tion into its associated word by performing an autocor-
rection algorithm on the obfuscated word;

selecting an obfuscated word from the data structures,

wherein the selected obfuscated word is to serve as an
obfuscated puzzle, wherein the word that is associated
with the selected obfuscated word is to serve as a solu-
tion for the obfuscated puzzle;

providing the obfuscated puzzle to a player;

receiving a proposed solution to the obfuscated puzzle

from the player;

comparing the received proposed solution with the solu-

tion for the obfuscated puzzle; and

in response to the comparison, determining whether the

player’s proposed solution was correct; and

wherein the method steps are performed by a processor.

2. The method of claim 1 further comprising:

performing the method steps with respect to a plurality of

players; and

a processor administering a game between the players to

reward a player whose proposed solution is determined
to be correct.

3. The method of claim 1 wherein the processor is resident
on a smart phone.

4. The method of claim 1 wherein the processor is resident
on a server, wherein the providing step comprises the server
communicating, via a network, the obfuscated puzzle to a
user computing device associated with the player for display
thereon, and wherein the receiving step comprises the server
receiving, via a network, the proposed solution from the user
computing device associated with the player.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

5. The method of claim 1 wherein the processor comprises
a first processor and a second processor, the first processor
performing the providing step, and the second processor per-
forming the receiving, comparing, and determining steps.

6. The method of claim 1 further comprising:

the processor providing the player with an option to pro-

cess an input character string using an autocorrect pro-
gram to formulate at least a portion of a possible solution
to the obfuscated puzzle.

7. The method of claim 6 further comprising:

the processor defining a user-configurable setting for

enabling or disabling the autocorrect program option.

8. The method of claim 1 further comprising:

the processor (1) receiving a plurality of characters from

the player, (2) performing an autocorrection algorithm
on the received characters to generate a corrected char-
acter string for the received characters, and (3) providing
the corrected character string to the player as an option
for submission as a proposed solution to the obfuscated
puzzle.

9. The method of claim 1 further comprising:

the processor providing an image of a standardized key-

board to the player for use by the player when attempting
to solve the obfuscated puzzle.

10. The method of claim 1 wherein the comparing step
comprises the processor (1) accessing a data structure stored
in a memory, the data structure comprising data representa-
tive of the obfuscated puzzle in association with data repre-
sentative of the solution for the obfuscated puzzle, and (2)
comparing the received proposed solution with the data rep-
resentative of the solution from the accessed data structure.

11. The method of claim 1 wherein the obfuscated puzzle
comprises a plurality of obfuscated words.

12. A method comprising:

maintaining a plurality of data structures in a memory that

provide autocorrection in reverse with respect to a plu-
rality of words, each data structure comprising a word
and at least one obfuscated word associated with that
word, each obfuscated word configured for de-obfusca-
tion into its associated word by performing an autocor-
rection algorithm on the obfuscated word;

selecting a plurality of obfuscated word from the data

structures, wherein the selected obfuscated words are to
serve as a puzzle character string, wherein the words that
are associated with the selected obfuscated words are to
serve as a solution for the puzzle character string;
providing the puzzle character string to a player;
receiving a proposed solution to the puzzle character string
from the player;

testing the proposed solution for correctness; and

inresponse to the testing indicating that the proposed solu-

tion was correct, providing a reward to the player; and
wherein the method steps are performed by a processor.

13. The method of claim 12 further comprising:

performing the method steps with respect to a plurality of

players; and

the processor administering a game between the players to

reward a player whose proposed solution is found to be
correct.

14. The method of claim 12 further comprising:

the processor providing the player with an option to pro-

cess an input character string using an autocorrect pro-
gram to formulate at least a portion of a possible solution
to the obfuscated puzzle.

15. The method of claim 12 wherein the proposed solution
receiving step comprises:

US 9,381,423 B2

19

the processor receiving a character string input from the

player;

the processor performing an autocorrection algorithm on

the received character string to generate a corrected
character string in response to the received character
string;

the processor receiving input from the player that is indica-

tive of using the corrected character string as at least a
portion of the proposed solution.

16. The method of claim 15 further comprising the proces-
sor imposing a limit on how much of the puzzle character
string can be processed by the autocorrection algorithm such
that less than all of the characters of the puzzle input character
string can be so processed.

17. A method comprising:

the processor maintaining a plurality of data structures in a

memory, each data structure comprising a word and at
least one obfuscated word associated with that word,
each obfuscated word configured for de-obfuscation
into its associated word by performing an autocorrection
algorithm on the obfuscated word;

receiving a character string input from a user, the character

string input to serve as a solution to an obfuscated
puzzle;

automatically generating an obfuscated puzzle from the

received character string input, wherein the generated
obfuscated puzzle is based on autocorrection in reverse
such that the obfuscated puzzle is configured to be de-
obfuscated into its solution via an autocorrection algo-
rithm, wherein the automatically generating step com-
prises:

10

15

20

25

20

the processor parsing the character string input into each
component word of the character input string;
for each component word, the processor accessing the
memory to identify an obfuscated word associated
with that component word; and
the processor assembling the obfuscated puzzle from
each identified obfuscated word; and
creating a data structure that associates the generated
obfuscated puzzle with the character string input from
which it was generated and which is to serve as its
solution; and
wherein the method steps are performed by a processor.
18. The method of claim 17 further comprising:
sharing the generated obfuscated puzzle with another user
for the another user to attempt solution thereof.
19. The method of claim 18 further comprising:
the processor presenting the automatically generated
obfuscated puzzle to the user;
the processor providing a user-selectable button on a
graphical user interface (GUI) screen presented to the
user;
the processor receiving input indicative of user selection of
the button; and
in response to the received input that is indicative of user
selection of the button, the processor repeating the auto-
matically generating step to automatically generate a
different obfuscated puzzle for the same character input
string.

